The Lie-Poisson Structure of the Euler Equations of an Ideal Fluid
نویسندگان
چکیده
This paper provides a precise sense in which the time t map for the Euler equations of an ideal fluid in a region in Rn (or a smooth compact n-manifold with boundary) is a Poisson map relative to the Lie-Poisson bracket associated with the group of volume preserving diffeomorphism group. This is interesting and nontrivial because in Eulerian representation, the time t maps need not be C from the Sobolev class Hs to itself (where s > (n/2) + 1). The idea of how this difficulty is overcome is to exploit the fact that one does have smoothness in the Lagrangian representation and then carefully perform a Lie-Poisson reduction procedure.
منابع مشابه
Euler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملThe Euler–Poincaré Equations in Geophysical Fluid Dynamics
Recent theoretical work has developed the Hamilton’s-principle analog of Lie-Poisson Hamiltonian systems defined on semidirect products. The main theoretical results are twofold: 1. Euler–Poincaré equations (the Lagrangian analog of Lie-Poisson Hamiltonian equations) are derived for a parameter dependent Lagrangian from a general variational principle of Lagrange d’Alembert type in which variat...
متن کاملPoisson reduction and the Hamiltonian structure of the Euler-Yang-Mills equations
The problem treated here is to find the Hamiltonian structure for an ideal gauge-charged fluid. Using a Kaluza-Klein point of view, we obtain the non-canonical Poisson bracket and the motion equations by a Poisson reduction involving the automorphism group of a principal bundle.
متن کاملPoisson geometry and first integrals of geostrophic equations
We describe first integrals of geostrophic equations, which are similar to the enstrophy invariants of the Euler equation for an ideal incompressible fluid. We explain the geometry behind this similarity, give several equivalent definitions of the Poisson structure on the space of smooth densities on a symplectic manifold, and show how it can be obtained via the Hamiltonian reduction from a sym...
متن کاملar X iv : 0 80 2 . 44 39 v 1 [ m at h . D G ] 2 9 Fe b 20 08 Poisson geometry and first integrals of geostrophic equations
We describe first integrals of geostrophic equations, which are similar to the enstrophy invariants of the Euler equation for an ideal incompressible fluid. We explain the geometry behind this similarity, give several equivalent definitions of the Poisson structure on the space of smooth densities on a symplectic manifold, and show how it can be obtained via the Hamiltonian reduction from a sym...
متن کامل